Using an artificial neural network to approximate the temporal evolution function of the lorenz system
DOI:
https://doi.org/10.32358/rpd.2016.v2.94Keywords:
Artificial Neural Network, Lorentz system, Approximation functions.Abstract
The main objective of this paper is to approximate the temporal evolution function of the Lorenz system using Artificial Neural Networks (ANN) type Multilayer Perceptron (MLP). Apart from this main objective, as a specific objective, presents the basic concepts of ANN, a brief history of chaos theory and the Lorentz system. The methodology used in the structuring of this paper was defined as bibliographic and experimental. Currently, there is great interest in models of neural networks to solve unconventional and complex problems, in this context the ANN have emerged as an alternative for numerous applications in various areas of knowledge. The results of the experiments indicate positively to the use of ANN. It is hoped that this paper encourage the use of ANN in complex applications where learning, association, generalization and abstraction are needed to support decision-making. It was concluded that the use of ANN could be an alternative for solving problems involving approximation functions.Downloads
References
AFFONSO, C. Aplicação de Redes Neuro Fuzzy ao Processamento de Polímeros na Indústria Automotiva. 2010. Dissertação (Mestrado) – Universidade Nove de Julho, Engenharia de Produção, São Paulo. 111 p.
BIGUS, J. P. Data Mining with Neural Network: Solving Business Problems from Applications Development to Decision Support. Mcgraw-Hill, 1996.
BRAGA, A. P.; CARVALHO A. C. P. L. F.; LUDERMIR, T. B. Redes Neurais Artificiais: Teoria e Aplicações. Rio de Janeiro. Ed. LTC, 2ª ed. Rio de Janeiro, 2011.
FERREIRA, Ricardo Pinto. Combinação de Técnicas da Inteligência Artificial para Previsão do Comportamento do Tráfego Veicular Urbano na Cidade de São Paulo. 2011. Dissertação (Mestrado) – Universidade Nove de Julho, Engenharia de Produção, São Paulo. 107 p.
GAGANIS, C. Classification techniques for the identification of falsified financial statements: a comparative analysis, Intell. Syst. Account. Financ. Manag. v.16, p. 207–229, 2009.
HAYKIN, S. Redes Neurais – Princípios e Práticas. Bookman. 2a edição. Porto Alegre, 2001.
HEBB, D. O. The Organization of Behavior: Neuropsychological Theory, N. Y.:Willey, 1949.
ITURRIAGA, F.J.L.; SANZ, I. P. Bankruptcy visualization and prediction using neural networks: a study of US commercial banks, Exp. Syst. Appl. 42, p. 2857–2869, 2015.
KOVÁCS, Z. L. Redes Neurais Artificiais - Fundamentos e Aplicações. Editora Livraria da Física. 4ª edição. São Paulo, 2006.
KRISTJANPOLLER, W.; MINUTOLO, M. C. Gold price volatility: a forecasting approach using the Artificial Neural Network–GARCH model, Exp. Syst. Appl, 2015.
LABOISSIERE, L. A.; FERNANDES, R. A.; LAGE, G. G. Maximum and minimum stock price forecasting of Brazilian power distribution companies based on artificial neural networks, Appl. Soft Comput, 2015.
LARRAIN, J. M.; TURNER, C. The treasury bill rate, the great recession, and neural networks estimates of real business sales, Proc. Comput. Sci. 36, p. 227–233, 2014.
LORENTZ, E. N. Deterministic nonperiodic flow, J. Atmosph. Sci., v.20. p. 130-141, 1963.
MARTINIANO, A. S.; FERREIRA, R. P.; AFFONSO, C.; SASSI, R. J. Aplicação de uma Rede Neuro Fuzzy na Previsão do Absenteísmo no Trabalho. CISTI'2012 - 7ª Conferencia Ibérica de Sistemas y Tecnologías de Información, 2012.
MATLAB ® version 7.8.0 R2009a, 2009.
MCCULOCH, W. S.; PITTS, W. H. A logical calculus of the ideas immanent in nervous activity, Bulletin of mathematical biophysics, v. 5, p. 115-133, 1943.
MENDEL, J. M.; MCLAREN, R. W. Reinforcement-learning control and pattern recognition systems. Adaptive, Learning and Pattern Recognition Systems. Academic Press, New York e London, Cap. 8, p. 287–318, 1970.
MONTEIRO, L. H. A. Sistemas Dinâmicos. 2. ed. São Paulo: Editora Livraria da Física, 2006.
RATH, S.; JAGADEV, A. K.; NAYAK, M. R. Performance analysis of stock market using artificial neural network, Int. J. Appl. Eng. Res. 10, 2015.
ROSENBLATT, M. The Perceptron: A probabilistic model for information storage and organization in the Brain. Psychological review, v.65, n.6, p. 386-408, 1958.
RUSSEL, S.; NORVIG, P. Inteligência Artificial. Campus. 3. ed. São Paulo, 2013.
SASSI, Renato José. Uma Arquitetura Híbrida para Descoberta de Conhecimento em Bases de Dados: Teoria dos Rough Sets e Redes Neurais Artificiais Mapas Auto-Organizáveis. 169 f. Tese (Doutorado) – Escola Politécnica da Universidade de São Paulo, Departamento de Engenharia Elétrica, São Paulo, 2006.
SILVA, I. N.; SPATTI, D. H.; FLAUZINO, R. A. Redes Neurais Artificiais para Engenharia e Ciências Aplicadas. SP: Artliber, 2010.
SIMÕES, M. G.; SHAW, I. S. Controle e Modelagem fuzzy. São Paulo: Blucher: FAPESP, 2007.
TEORIA DO CAOS. Disponível em: < http://www.brasilescola.com/fisica/teoria-caos.htm# > Acesso em 04 fev. 2016.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Produção e Desenvolvimento
This work is licensed under a Creative Commons Attribution 4.0 International License.
All content on this work is licensed under a Creative Commons BY Attribution 4.0 Unported license. The articles are free to use, with their CC BY attributions of license.
The journal is not responsible for the opinions, ideas and concepts emitted in the texts, as they are the sole responsibility of its author (s).
The publisher has the right to reject articles that in the evaluation process have been detected signs of plagiarism. The articles that have been detected indications of plagiarism after the publication, will be excluded from the edition. And the indication of the problem will be informed in the place of the text, keeping the same amount of pages.
This journal adopts the principles of ethical conduct of international quality Committee on Publication Ethics (COPE), as well as the parameters of Integrity in the Scientific Activity indicated by SCOPUS and SCIELO.