Thermal degradation of açaí seeds and potential application in thermochemical processes

Authors

DOI:

https://doi.org/10.32358/rpd.2021.v7.531

Keywords:

açai seeds, added value, bioenergy, biomass characterization, thermal analysis

Abstract

Purpose: Thermal and Physicochemical evaluation of açaí seeds for its use in thermochemical conversion processes for clean energy generation. Methodology: Experimental and qualitative research, using analyzes such as: Thermal analysis (TG/DTG and DTA curves) and Calorimetry, Ultimate and Proximate analyzes, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, X-Ray Diffraction, Fourier Transform Infrared Spectroscopy and Optical Emission Spectroscopy - Inductively Coupled Plasma. Findings: It was noted that the açaí seeds presented carbon, hydrogen, and oxygen contents as majority elements and a Higher Heating Value (HHV) of 19.8 MJ kg-1. Nitrogen and lead elements were found as trace elements. However, highly polluting elements, e.g., sulfur, cadmium and arsenic were not detected in the samples. Originality: The utilization of açaí seeds by means of thermoconversion processes for bioenergetic purposes can be an attractive socioenvironmental, reducing disposal in inappropriate places, adding considerable value to waste and still protecting the environment. 

Downloads

Download data is not yet available.

Author Biographies

Luciano dos Santos Oliveira, Federal University of Maranhão

Graduated in Mechanical Engineering (2020) from the Federal University of Maranhão (UFMA), working mainly on projects aimed at the development of a hydrothermal route for the synthesis of a nanoparticulate catalyst for use in the production of biodiesel and also in the reuse of solid waste biomass. urban areas in the municipality of São Luís (MA) and later use in thermo-chemical conversion systems for bioenergetic purposes, financed by Fapema and CNPq, respectively.

Arthur Vinicius Sousa Silva, Federal Institute of Maranhão

Graduated in Interdisciplinary Bachelor of Science and Technology (2017) and Mechanical Engineering (2019) from the Federal University of Maranhão (UFMA). He is studying for a Master's Degree in Mechanical Engineering at the Federal Institute of Education, Science and Technology of Maranhão (IFMA). He developed works in the field of linguistics through computational analysis. Currently works with the characterization of the physical-chemical and thermal properties of fish scales and use in thermo-conversion systems, with bioenergetic purposes; gaseous emissions and / or pollutant formation in different thermochemical processes (combustion and pyrolysis). He also develops work in the field of biomass in general for bioenergetic purposes.

Charles Correa Conconi, Mercedes-Benz Brazil

Graduated in Chemical Engineering from Faculdades Oswaldo Cruz, Master in Science and Materials Engineering from São Carlos School of Engineering - University of São Paulo (EESC-USP) and PhD in Mechanical Engineering from São Carlos School of Engineering - University of São Carlos Paulo (EESC-USP). He is currently an Engineer and Materials Research at Mercedes-Benz do Brasil Ltda. It develops engine lubricant, gearbox, differential, power steering, greases, brake fluid, anti-freeze / anti-corrosion fluids, among others, for use in Mercedes-Benz vehicles. It analyzes physicochemical of the lubricants, greases and fluids used for making warranty reports. Developments of new methods of physical-chemical analysis on bench or using analytical equipment (Gas Chromatography, Infrared by Furier transform, Mass Spectroscopy, Liquid Chromatography, Term analysis among others) Technical consultancy related to automotive and industrial lubricants, fuels, greases and others.

Edelvio de Barros Gomes, Federal Institute of Bahia

Biologist, PhD in Chemical and Biochemical Process Technology at UFRJ. Post-doctorate: School of Chemistry - UFRJ; Department of Food Technology - UFS; Post-graduation in Environment - Uniceuma. Performance in research with Biotreatment of residues and Treatment of lignocellulosic biomass. Professor of Cell Biology, Biology, Bioengineering, Microbiology and Bioprocesses.

Waldir Antônio Bizzo, University of Campinas

Free Lecturer at the State University of Campinas, at the Faculty of Mechanical Engineering. He holds a PhD in Mechanical Engineering from Unicamp (1997) and did a postdoctoral internship at CIRAD-Center de coopération internationale en recherche agronomique pour le développement (Montpellier-France) in the research group Biomasse-Energie. He has published more than 30 articles in specialized journals, 6 chapters in books and 46 works in the annals of events. He supervised 26 master's dissertations and 10 doctoral theses in the areas of Mechanical Engineering, Chemical Engineering and Environmental Engineering. He works in the areas of biomass combustion research, rapid pyrolysis, combustion aerodynamics and pollutant formation, biomass energy generation, fluidized bed.

Glauber Cruz, Federal University of Maranhão

Graduated in Industrial Mechanical Engineering (2004) by the Federal Institute of Technological Education of Maranhão (IFMA), Master in Aeronautical and Mechanical Engineering (2006) by the Technological Institute of Aeronautics (ITA) and PhD in Mechanical Engineering (2015) by the School of Engineering of São Carlos (EESC) - University of São Paulo (USP). He is currently an Adjunct Professor III and Researcher in the Mechanical Engineering Course (CCEM) at the Federal University of Maranhão (UFMA). Permanent Professor of the Master in Mechanical Engineering (IFMA) and Collaborating Professor of the Masters in Environment (UniCeuma) and Aerospace Engineering (UFMA). He has experience in Transport Phenomena (Fluid Mechanics, Heat and Mass Transfer, and Thermodynamics) and Numerical Simulation of Thermal Systems (CFD-Computational Fluids Dynamic). It also uses various lignocellulosic materials (biomass) or solid waste for the production of bioenergy / biofuels. Thermal and physico-chemical characterization of these materials by various analytical techniques; Chemical kinetics of thermal decomposition reactions of these residues to determine activation energies; Gaseous emissions and / or pollutant formation in different thermochemical processes (combustion, oxy-combustion, pyrolysis and gasification) of biomass for bioenergetic purposes.

References

Aliotte, F. F. (2020). Indicador de preço para valorização da biomassa a partir da geração de vapor no Estado de São Paulo. Dissertação (Mestrado em Agronegócio) – Escola de Economia de São Paulo, Fundação Getúlio Vargas, São Paulo.

Babu, B. V. (2008). Biomass pyrolysis: a state-of-the-art review. Biofuels, Bioproducts and Biorefining, 2 (5), 393-414. https://doi.org/10.1002/bbb.92

Barbosa, A. M.; Rebelo, V. S. M.; Martorano, L. G.; Giacon, V. M. (2019). Caracterização de partículas de açaí visando seu potencial uso na construção civil. Revista Matéria, 24 (3), 1-11. https://doi.org/10.1590/s1517-707620190003.0750

Barbosa, I. R.; Barcellos, K. M.; Souza, J. E. A.; Cavalcanti, C. A. S. H.; Danta, L. P. M.; Alécio, A. H. L. (2016). Caracterização do potencial energético de biomassas. In: XXI Congresso Brasileiro de Engenharia Química. Anais Eletrônicos, Campinas, Galoá.

Benedito, T. H. S. (2012). Coleta, análise e degradação catalítica do alcatrão produzido na gaseificação de caroço de açaí e casca de arroz. Dissertação (Mestrado em Engenharia e Tecnologia Espaciais/Engenharia e Gerenciamento de Sistemas Espaciais) – Instituto Nacional de Pesquisas Espaciais, São José dos Campos.

Braz, C. E. M. (2014). Caracterização de biomassa lignocelulósica para uso em processos térmicos de geração de energia. 2014. Dissertação (Mestrado em Química) – Engenharia Química, Universidade Estadual Paulista, São Paulo.

Cordeiro, M. A.; Almeida, O.; Rodrigues, E. M. S.; Chaves Neto, A. M. J.; Machado, N. T. (2019). Produção de etanol através da hidrólise enzimática do caroço de açaí (Euterpe oleracea mart). Revista Brasileira de Energias Renováveis, 8 (1), 122-152. https://doi.org/10.5380/rber.v8il.53977

Cortez, L. A. B.; Lora, E. E. S.; Gómez, E. O. (2008). Biomassa para energia. Campinas: Unicamp.

Costa, J. S. (2018). Biomassa residual para uso energético no Estado do Pará. Dissertação (Mestrado em Ciências Florestais) – Universidade Federal Rural da Amazônia, Belém.

Cruz, G. and Crnkovic, P. M. (2015). Investigation into the kinetic behavior of biomass combustion under N2/O2 and CO2/O2 atmospheres. Journal of Thermal Analysis and Calorimetry, 123, 1003-1011. https://doi.org/10.1007/s10973-015-4908-2

Cruz, G.; Braz, C. E. M.; Ávila, I.; Crnkovic, P. M. (2018). Physico-chemical properties of Brazilian biomass: potential applications as renewable energy source. African Journal of Biotechnology, 1, 1-19. https://doi.org/10.5897/AJB2017.16296

Cruz, G.; Rodrigues, A. L. P.; Silva, D. F.; Gomes, W. C. (2021). Physical-chemical characterization and thermal behavior of cassava harvest waste for application in thermochemical processes. Journal of Thermal Analysis and Calorimetry, 143, 3611-3622. https://doi.org/10.1007/s10973-020-09330-6

Cunha, K. C. L.; Lima, S. S.; Oliveira, L. S.; Querino, J. K. A. S.; Ferreira, W. M. (2018). Avaliação do resíduo do açaí como fonte alternativa de energia. In: Seminário Internacional em Ciências do Ambiente e Sustentabilidade na Amazônia 5, Manaus.

Domingos, C. A.; Pereira, D. D.; Cardoso, L. S.; Teodoro, R. A.; Castro, V. A. (2012). Biodiesel – proposta de um combustível alternativo. Revista Brasileira de Gestão e Engenharia, 5, 134-178.

EPE - Empresa de Pesquisa Energética (2019). Balanço energético nacional 2019: Ano base 2018. Rio de Janeiro, 67.

Félix, C. R. O.; Azevedo Jr., A. F.; Freitas, C. C.; pires, C. A. M.; Teixeira, V.; Frety, R.; Brandão, S. T. (2017). Pirólise rápida de biomassa de eucalipto na presença de catalisador Al-MCM-41. Revista Matéria, 22(1), 1-11. https://dx.doi.org/10.1590/s1517-707620170005.0251

Ferreira, R. S.; Silva, I. A.; Silva, R. F.; Viana, F. M. P. C.; Pereira, M. S.; Rodrigues, E. C. (2018). Análise das propriedades mecânicas do concreto permeável com incorporação de sementes de açaí. In: 3° Congresso Luso-Brasileiro de Materiais de Construção Sustentáveis, Coimbra. Ata do 3° CLBMCS 2018.

Figueiredo, F. L.; Fernandes, F.; Petrucci, A. L.; Furini Filho, R.; Marsura, M. (2012). Produção de energia elétrica através da biomassa em sistema de gaseificação concorrente e grupo gerador com capacidade de 50 kVA. Semina: Ciências Exatas e Tecnológicas, 33 (2), 165-174. http://dx.doi.org/10.5433/1679-0375.2012v33n2p165

Fraga, L. A. and Tavares, M. I. B. (2017). Estudo de diferentes condições de mercerização das fibras da semente de açaí (Euterpe oleracea). Revista Semioses, 11 (3), 49-54. https://doi.org/10.15202/1981996X.2017v11n3p49

Kok, M. V.; varfolomeev, M. A.; nurgaliev, D. K. (2017). Crude oil characterization using TGA-DTA, TGA-FTIR and TGA-MS techniques. Journal of Petroleum Science and Engineering, 154, 537-542. https://doi.org/10.1016/j.petrol.2016.12.018

Marcelino, M. M. (2017). Biomassa residual do coco para obtenção de energia e intermediários químicos via gaseificação: caracterização, modelagem e simulação. Dissertação (Mestrado em Engenharia Industrial) – Universidade Federal da Bahia, Salvador.

Martelli, F. H. (2014). Determinação e caracterização físico-química e espectroscópica de gramíneas para obtenção de etanol de segunda geração. Dissertação (Mestrado em Química Analítica e Inorgânica) – Universidade de São Paulo, São Carlos.

Martins, M. A.; Mattoso, L. H. C.; Pessoa, J. D. C. (2009). Comportamento térmico e caracterização morfológica das fibras de mesocarpo e caroço do açaí (Euterpe oleracea mart.). Revista Brasileira de Fruticultura, 31 (4), 1150-1157. http://dx.doi.org/10.1590/S0100-29452009000400032

Mason, P. E.; Darvell, L. I.; Jones, J. M.; Williams, A. (2016). Observations on the release of gas-phase potassium during the combustion of single particles of biomass. Fuel, 182, 110-117. https://doi.org/10.1016/j.fuel.2016.05.077

Mckendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 83, 37-46. https://doi.org/10.1016/S0960-8524(01)00118-3

Medeiros, C. M. (2016). Caracterização físico-química de resíduos sólidos da indústria de celulose e papel para fins energéticos. Dissertação (Mestrado em Materiais Aplicados às Energias Renováveis) – Universidade Federal da Paraíba, João Pessoa.

Mlonka-Medrala A.; Magdziarz, A.; Gajek, M.; Nowinska, K.; Nowak, W. (2020). Alkali metals association in biomass and their impact on ash melting behavior. Fuel, 261, 1-17. https://doi.org/10.1016/j.fuel.2019.116421

Muniz, R. N. and Rocha, b. R. P. (2013). Gaseificação de biomassa residuária na Amazônia: estudo de caso em comunidade quilombola no Pará. In: 8° Congresso Internacional de Bioenergia, São Paulo.

Musellim, E.; tahir, M. H.; Ahmad, M. S.; Ceylan, S. (2018). Thermokinetic and tg/dsc-ftir study of pea waste biomass pyrolysis. Applied Thermal Engineering, 137, 54-61. https://doi.org/10.1016/j.applthermaleng.2018.03.050

Oliveira, D. N. P. S.; Claro, P. I. C.; Freitas, R. R.; Martins, M. A.; Souza, T. M.; Silva, B. M. S.; Mendes, L. M.; bufalino, L. (2019). Enhancement of the amazonian açaí waste fibers through variations of alcali pretreatment parameters. Chemistry and Biodiversity, 16, 1-12. https://doi.org/10.1002/cbdv.201900449

Oliveira, M. S. P.; Farias Neto, J. T.; Pena, R. S. (2007). Açaí: técnicas de cultivo e processamento. Fortaleza: Instituto Frutal.

Ong, H. C.; Chen, W.; Singh, Y.; Gan, Y. Y.; Chen, C.; Show, P. L. (2020). A state-of-the-art review on thermochemical conversion of biomass for biofuel production: a TG-FTIR approach. Energy Conversion and Management, 209, 1-21. https://doi.org/10.1016/j.enconman.2020.112634

Protásio, T. P. (2014). Biomassa residual do coco babaçu: potencial de uso bioenergético nas regiões norte e nordeste do brasil. Dissertação (Mestrado em Ciência e Tecnologia da Madeira) – Universidade Federal de Lavras, Lavras.

Qiao, Y.; Xu, F.; Ming, X.; Feng, S.; Ji, Y.; Jiang, Y.; Li, J.; Wang, b.; Tian, Y. (2020). Valorization of vegetable waste via pyrolysis: thermal behavior, volatiles release and products analysis from its extractives. Energy Fuels, 34, 1896-1907. https://doi.org/10.1021/acs.energyfuels.9b03970

Queiroz, J. A. L. and Melém Jr., N. J. (2001). Efeito do tamanho do recipiente sobre o desenvolvimento de mudas de açaí (Euterpe oleracea mart.). Revista Brasileira de Fruticultura, 23 (2), 460-462. https://doi.org/10.1590/S0100-29452001000200054

Rambo, M. K. D.; Schmidt, F. L.; Ferreira, M. M. C. (2015). Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Talanta, 144, 696-703. https://doi.org/10.1016/j.talanta.2015.06.045

Rangel, R. N. (2014). Modelagem, caracterização e simulação da pirólise do caroço de açaí. Monografia (engenharia de energia) – Universidade de Brasília, Brasília.

Ren, X.; Meng, X.; Vorobiev, N.; Schiemann, M.; Levendis, Y. (2017). Carbon, sulfur and nitrogen oxide emissions from combustion of pulverized raw and torrefied biomass. Fuel, 188, 310-323. https://doi.org/10.1016/j.fuel.2016.10.017

Saidur, R.; Abdelaziz, E. A.; Demirbas, A.; Hossain, M. S.; Mekhilef, S. (2011). A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews, 15, 2262-2289. https://doi.org/10.1016/j.rser.2011.02.015

San Miguel, G.; Domínguez, M. P.; Hernández, M.; Sanz-Pérez, F. (2012). Characterization and potential applications of solid particles produced at a biomass gasification plant. Biomass and Bioenergy, 47, 134-144. https://doi.org/10.1016/j.biombioe.2012.09.049

Santos, R. E. J. (2011). Estudo experimental de um reator de gaseificação em um leito fixo de açaí. Dissertação (Mestrado em Engenharia Mecânica) – Universidade Federal do Pará, Belém.

Sasmal, S.; Goud, V. V.; Mohanty, K. (2012). Characterization of biomasses available in the region of North-east India for production of biofuels. Biomass and Bioenergy, 45, 212-220. https://doi.org/10.1016/j.biombioe.2012.06.008

Silva, A. V. S.; Torquato, L. D. M.; Cruz, G. (2019). Potential application of fish scales as feedstock in thermochemical processes for the clean energy generation. Waste Management, 100, 91-100. https://doi.org/10.1016/j.wasman.2019.09.007

Silva, J. B. S.; Torquato, L. D. M.; Crnkovic, P. M.; Cruz, G. (2021). Investigation of urban pruning wastes as biofuels and possible utilization in thermal systems. Brazilian Journal of Development, 7, 24730-24750. https://doi.org/10.34117/bjdv7n3-265

Sousa, A. C. and Vieira, P. J. C. (2014). Estudo experimental da gaseificação do caroço de açaí. Trabalho de conclusão de curso (Graduação em Engenharia de Energia) – Universidade de Brasília, Brasília.

Souto, B. A.; Souza, V. L. C.; Perazzini, M. T. B.; Perazzini, H. (2021). Valorization of açai bio-residue as biomass for bioenergy: determination of effective thermal conductivity by experimental approach, empirical correlations and artificial neural networks. Journal of Cleaner Production, 279, 1-12. https://doi.org/10.1016/j.jclepro.2020.123484

Souza, N. P.; Rezende Neto, P. C.; Brasileiro, B. C.; Kuhl, R. M.; Muniz, R. N.; Sá, J. A. S.; Rocha, B. R. P. (2015). Electricity generation from residual biomass: project plant gasification jenipaúba, abaetetuba, pa. In: xi latin-american congress on eletricity generation and transmission bioenergy for eletricity generation and ecological issues in power plants, São José dos Campos. Book of Abstracts and Proceedings of 11th Latin-American Congress on Electricity Generation and Transmission – Clagtee. https://doi.org/10.13140/RG.2.1.2529.4168

Torquato, L. D. M.; Crnkovic, P. M.; Ribeiro, C. A.; Crespi, M. S. (2017). New approach for proximate analysis by thermogravimetry using co2 atmosphere: validation and application to different biomasses. Journal of Thermal Analysis and Calorimetry, 128, 1-14. http://doi.org/10.1007/s10973-016-5882-z

Virmond, E.; Sena, R. F.; Albrecht, W.; Althoff, C. A.; Moreira, R. F. P. M.; José, H. J. (2012). Characterisation of agroindustrial solid residues as biofuels and potential application in thermochemical processes. Waste Management, 32, 1952-1961. https://doi.org/10.1016/j.wasman.2012.05.014

Vital, A. A. B.; Borba, J. E. M.; Carvalho M. (2018). Geração de energia elétrica num condomínio residencial a partir da gaseificação de biomassa. In: Silva, R. C. P.; Santos, J. P. O.; Mello, D. P.; El-Deir, S. G. (orgs.). Resíduos sólidos: tecnologias e boas práticas de economia circular. 1ª ed. Recife: EDUFRPE, 259-270.

Wang, S.; Dai, G.; Yang, H.; Luo, Z. (2017). Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Progress in Energy and Combustion Science, 62, 33-86. https://doi.org/10.1016/j.pecs.2017.05.004

Williams, A.; Jones, J. M.; Ma, l.; Pourkashanian, M. (2012). Pollutants from the combustion of solid biomass fuels. Progress in Energy and Combustion Science, 38, 113-137. https://doi.org/10.1016/j.pecs.2011.10.001

Yang, Y. B.; Ryu, C.; Khor, A.; Yates, N. E.; Sharifi, V. N.; Swithenbank, J. (2005). Effect of fuel properties on biomass combustion. Part II. Modelling approach – identification of the controlling factors. Fuel. 84, 2116-2130. https://doi.org/10.1016/j.fuel.2005.04.023

Downloads

Published

2021-06-08

How to Cite

Oliveira, L. dos S. ., Silva, A. V. S. ., Conconi, C. C. ., Gomes, E. de B. . ., Bizzo, W. A. ., & Cruz, G. (2021). Thermal degradation of açaí seeds and potential application in thermochemical processes. Revista Produção E Desenvolvimento, 7. https://doi.org/10.32358/rpd.2021.v7.531

Issue

Section

Management Affairs