CO2 emissions and the potential for expansion of fossil fuels in the BRICS




natural gas, co2 emissions, energy trilemma, kaya decomposition


Purpose: This work aims to analyze CO2 emissions and a possible increase in the consumption of fossil fuels, in a context that studies the Energy Trilemma and development of BRICS countries. Methodology/Approach: Based on empirical knowledge and data available on the International Energy Agency (IEA) portal and on the Energy Trilemma Report, the research analyzes the energy and electricity matrix, population, emissions, Gross domestic product (GDP) and Human Development Index (HDI). Findings: A pattern was not observed between development and participation of renewable energy. But, countries with high HDI have a better evaluated energy system. There was a worsening in Brazil in per capita emissions, energy and carbon intensity. However, this change is not related to the growth in natural gas consumption. Research Limitation/implication: The databases limited the study, due to the difference in the timeline of the World Energy Council (WEC) and International Energy Agency (IEA) and the lack of detail in the calculation of the Energy Trilemma evaluation. Originality/Value of paper: A comparative analysis that relates Brazil with similar countries, such as those in the BRICS group, contributing to energy equity, which reduces the cost of electricity without ecological damage.


Download data is not yet available.

Author Biographies

Tiago Ribeiro Espíndola Soares, Petróleo Brasileiro SA

Metallurgical and Materials Engineer, Master in Systems Applied to Engineering and Mechanical Technician. Experience in metallurgy, test specimen manufacturing, metallographic preparation, analysis and discussion of results. Purchasing and controllership, working with quotes, reports and data analysis, income and expenses. Master Systems Applied to Engineering and Management. Fluminense Federal Institute, IFF, Brazil.

João José de Assis Rangel, Fluminense Federal Institute

João holds a PhD in Engineering and Materials Science from the Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF (1998), a Master's degree in Mechanical Engineering from the Military Institute of Engineering - IME (1994) and a degree in Mechanical Engineering from Universidade Gama Filho - UGF (1991) . He is currently a Full Professor at the Fluminense Federal Institute (IFF). He has experience in the areas of Sustainability Engineering and Operational Research, with an emphasis on Analytical and Simulation Models, working mainly on the following topics: computer simulation, sustainable development and production of diamonds and diamond tools. He has acted as a member and/or coordinator of several projects, with funding from development agencies such as FAPERJ, CNPq and CAPES, focusing on the application of computer simulation for the analysis of logistical systems, industrial manufacturing processes and the production and efficient use of natural and energy resources.


Almeida Prado, F., Athayde, S., Mossa, J., Bohlman, S., Leite, F., & Oliver-Smith, A. (2016). How much is enough? An integrated examination of energy security, economic growth and climate change related to hydropower expansion in Brazil. Renewable and Sustainable Energy Reviews, 53, 1132–1136.
Andrade, C. E. S. de. (2016). Avaliação da Emissão de Dióxido de Carbono e do uso de Energia no Ciclo de Vida de Sistemas Metroferroviários de Passageiros: Aplicação na Linha 4 do Metrô do Rio de Janeiro [Tese de Doutorado]. Universidade Federal do Rio de Janeiro.
Angelo, C., & Rittl, C. (2019). Análise das emissões brasileiras de gases de efeito estufa e suas implicações para as metas do Brasil (p. 33). SEEG.
Asbahi, A. A. M. H. A., Gang, F. Z., Iqbal, W., Abass, Q., Mohsin, M., & Iram, R. (2019). Novel approach of Principal Component Analysis method to assess the national energy performance via Energy Trilemma Index. Energy Reports, 5, 704–713.
Bijos, L., & Guilhon, E. P. (2014). Brics, uma alternativa de poder? Revista do Direito Público, 9(1), 9.
Bogoviz, A. V., Ragulina, Y. V., Lobova, S. V., & Alekseev, A. N. (2019). A QUANTITATIVE ANALYSIS OF ENERGY SECURITY PERFORMANCE BY BRAZIL, RUSSIA, INDIA, CHINA, AND SOUTH AFRICA IN 1990-2015. International Journal of Energy Economics and Policy, 9(3), 244–250.
Lei no 14.134, de 8 de abril de 2021, no 14134 (2021), -.
Bronzatti, F. L., & Neto, A. I. (2008). Matrizes energéticas no Brasil: Cenário 2010-2030. Anais Eletrônicos do Encontro Nacional de Engenharia de Produção, 15.
Brown, M. A., Wang, Y., Sovacool, B. K., & D’Agostino, A. L. (2014). Forty years of energy security trends: A comparative assessment of 22 industrialized countries. Energy Research & Social Science, 4, 64–77.
Campos, A. F., da Silva, N. F., Pereira, M. G., & Vasconcelos Freitas, M. A. (2017). A review of Brazilian natural gas industry: Challenges and strategies. Renewable and Sustainable Energy Reviews, 75, 1207–1216.
Cervantes Bravo, R. J., Jimenez Nieves, E., Valqui Ordoñez, B., Canto Espinoza, D., & Hinostroza Cairo, A. (2020). A Sustainable Future Under Energy Intensity Scenarios-Peru’s Compliance with COP24 in an Energy Trilemma Environment. SPE Latin American and Caribbean Petroleum Engineering Conference. SPE Latin American and Caribbean Petroleum Engineering Conference, Virtual.
Dai, S., Zhang, M., & Huang, W. (2016). Decomposing the decoupling of CO2 emission from economic growth in BRICS countries. Natural Hazards, 84(2), 1055–1073.
de Castro, N., & Brandão, R. (2021). Causas da crise hídrica no Brasil. Agência Broadcast Energia, 3.
Ebhota, W. S., & Jen, T.-C. (2020). Fossil Fuels Environmental Challenges and the Role of Solar Photovoltaic Technology Advances in Fast Tracking Hybrid Renewable Energy System. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(1), 97–117.
EPE - Empresa de Pesquisa Energética. (2020). Demanda de Gás Natural nos Mercados Nacional e Internacional.
Feijó, G. D. R., & Rangel, J. J. de A. (2018). Analysis of behaviour in the emissions of carbon dioxide of Brazil and other countries based on the Kaya Identity and the Emission Profile. Desenvolvimento e Meio Ambiente, 46.
Fioreze, M., Hedlund, K. F. S., Graepin, C., Silva, T. C. N., Azevedo, F. C. G. de, & Kemerich, P. D. da C. (2013). Gás natural: Potencialidades de utilização no Brasil. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 10(10), 2251–2265.
Harjanne, A., & Korhonen, J. M. (2019). Abandoning the concept of renewable energy. Energy Policy, 127, 330–340.
Heffron, R. J., & McCauley, D. (2017). The concept of energy justice across the disciplines. Energy Policy, 105, 658–667.
IEA - INTERNATIONAL ENERGY AGENCY. (2015). CO2 emissions from fuel combustion 2019—Highlights (p. 165). IEA.
IPCC - Intergovernmental Panel on Climate Change. (2015). Climate change 2014: Mitigation of climate change. Cambridge University.
Kaya, Y. (1997). Environment, energy, and economy: Strategies for sustainability. Tokyo: United Nations University Press.
Lima, F., Portugal-Pereira, J., Lucena, A. F. P., Rochedo, P., Cunha, J., Lopes Nunes, M., & Szklo, A. S. (2015). Analysis of energy security and sustainability in future low carbon scenarios for Brazil: Analysis of energy security and sustainability in future low carbon scenarios for Brazil. Natural Resources Forum, 39(3–4), 175–190.
Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., & Waterfield, T. (2018). IPCC, 2018: Summary for Policymakers. World Meteorological Organization.
Pui, K. L., & Othman, J. (2019). The influence of economic, technical, and social aspects on energy-associated CO2 emissions in Malaysia: An extended Kaya identity approach. Energy, 181, 468–493.
Ripple, W. J., Wolf, C., Newsome, T. M., Barnard, P., & Moomaw, W. R. (2019). World Scientists’ Warning of a Climate Emergency. BioScience, biz088.
Setyowati, A. B. (2020). Mitigating Energy Poverty: Mobilizing Climate Finance to Manage the Energy Trilemma in Indonesia. Sustainability, 12(4), 1603.
Siegel, S. (1975). Estatística não-paramétrica: Para as ciências do comportamento. McGraw-Hill do Brasil.
Šprajc, P., Bjegović, M., & Vasić, B. (2019). Energy security in decision making and governance—Methodological analysis of energy trilemma index. Renewable and Sustainable Energy Reviews, 114, 109341.
Su, W., Wang, Y., Streimikiene, D., Balezentis, T., & Zhang, C. (2020). Carbon dioxide emission decomposition along the gradient of economic development: The case of energy sustainability in the G7 and Brazil, Russia, India, China and South Africa. Sustainable Development, 28(4), 657–669.
Tarko, A., Kurbatova, A., & Llerena, S. (2019). Effect of CO 2 increase on ecological parameters of plant ecosystems of Central and South America countries. E3S Web of Conferences, 116, 00090.
Vieira, E. P. L., Garcia, E. C. B., Torres, D. E. A., Osvaldo, D., & Guimarães, M. H. (2005). Benefícios Ambientais do Gás Natural no Estado da Bahia. Anais do 3° Congresso Brasileiro de P&D em Petróleo e Gás, 6.
WEC - World Energy Council. (2018). World Energy Trilemma Index 2018. WEC.
WEC - World Energy Council. (2022). Energy Trilemma Index. Energy Trilemma Index.!/energy-index
Yang, P., Liang, X., & Drohan, P. J. (2020). Using Kaya and LMDI models to analyze carbon emissions from the energy consumption in China. Environmental Science and Pollution Research, 27(21), 26495–26501.



How to Cite

Soares, T. R. E., & Rangel, J. J. de A. (2022). CO2 emissions and the potential for expansion of fossil fuels in the BRICS. Revista Produção E Desenvolvimento, 8(1), e603.



Markets & Management

Most read articles by the same author(s)