Strategies for the evaluation of electrification projects of public transportation by bus
DOI:
https://doi.org/10.32358/rpd.2020.v6.461Keywords:
electro mobility, public transportation, eletric, busesAbstract
Purpose: This paper introduces a project evaluation strategy and risk mapping for electrification of public transportation. It is also the scope for identifying the participation of institutions beyond and of the transportation ecosystem in the decision-making process of electric bus projects. Methodology/ Approach: The methodology is based in a feasibility study to assess the applicability of electric buses according to the operational and infrastructure characteristics of the cities. Findings: The achieved strategy presented a global vision of project elaboration, including the participation of steakholders who are not traditionally associated with planning, but are an active part of the services provision. Research Implication: Based on the project evaluation strategy proposed is possible to reduce market or technology uncertainties, to anticipate and mitigate the identified risks to provide safer recommendations to decision makers. Originality/Value of paper: transportation planners and decision maker will now be able to make decisions based on a thorough assessment of the compatibility of electric buses with the respective cities.Downloads
References
Aber, J. (2016). Electric Bus Analysis for New York City Transit. New York City Transit, Columbia University, Nova York, EUA.
Basso, C. (2011). O Impacto dos Veículos Elétricos Plug-in no Sistema Elétrico de Potência. Trabalho de Conclusão de Curso, Universidade Federal do Pampa
Bi, Z.; Kleine, R.; Keoleian, G. A. (2016). Integrated Life Cycle Assessment and Life Cycle Cost Model for Comparing Plug-in versus Wireless Charging for an Electric Bus System. Jornal of Industrial Ecology, 21, 344-355. https://doi.org/10.1111/jiec.12419
Byd (2019). Entrevista com representante da BYD no Seminário Nacional NTU 2019. Brasília, DF
Carb (2016). Battery Cost for Heavy-Duty Electric Vehicles. California Air Resources Board, California, EUA
Carb, California Air Resources Board. (2015). Low carbon fuel standard. Final Regulation Order, Title 17, California Code of Regulations. Available in <https://www.arbca.gov/regact/2015/lcfs2015/lcfsfinalregorder.pdf>. Accessed 15/08/2020
Cavaglia, B. (2014). Interview Local Government Turin (Citta’ Di Torino)
Chaves, L. R. (2019). Elétricos no horizonte. Edição 283. Available in: < https://revistapesquisa.fapesp.br/2019/09/06/eletricos-no-horizonte/>. Accessed: 09/09/2019
Cooney, G. A. (2011). Life cycle assessment of diesel and electric public transportation buses. Masters Dissertation, University of Pittsburgh, Pennsylvania, EUA
D’agosto, M. A.; Gonçalves, D. N. S.; Almeida, I. R. P. L. (2017). Ônibus elétricos a bateria (plug-in): Uma primeira avaliação da viabilidade econômica e do impacto na tarifa para o uso nas cidades brasileiras. Transportation Engineering – PET/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
Ding (2015). Value of the energy storage system in an electric bus fast charging station. Department of Electrical Engineering, Tsinghua University, China
Eletra, 2019. Entrevista com representante da Eletra no Seminário Nacional NTU 2019. Brasília, Brazil
Elgowainy, A; HAN, J.; POCH, L; WANG, M.; VYAS, A; MAHALIK, M.; ROUSSEAU, A. (2010). Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles. Argonne National Laboratory, Chicago University, EUA
Ercan, T.; Zhao, Y.; Tatari, O, Pazour, J. A. (2015). Optimization of transit bus fleet's life cycle assessment impacts with alternative fuel options. Energy, 93, 323-334. https://doi.org/10.1016/j.energy.2015.09.018.
Eudy, L. (2016). Foothill Transit Battery Electric Bus Demonstration Results. National Renewable Energy Laboratory, Golden Coast, EUA
Falco, D. G. (2017). Avaliação do desempenho ambiental do transporte coletivo urbano no estado de São Paulo: uma abordagem de ciclo de vida do ônibus a diesel e elétrico à bateria. Faculdade de Engenharia Mecânica da Universidade Estadual de Campinas, Campinas, SP
Flyer (2016). New Flyer Xcelsior®XE40 Battery-Electric Bus Port Authority of Allegheny County Demonstration Report. New Flyer, Pittsburgh, EUA
Greenpeace (2016). Dossiê Ônibus Limpo – Benefícios de uma transição para combustíveis renováveis na frota de São Paulo. São Paulo, Brazil
Grutter, J. (2016). Real World Performance of Hybrid and Electric Buses. Grutter Consulting, Reinach, Schweiz
Labmob, 2020. Plataforma E-bus Radar. Available in < https://www.ebusradar.org/>. Accessed 17/07/2020
Laizānsa, A.; Graursc, I.; Rubenisa, A.; Utehinc, G. (2016). Economic Viability of Electric Public Busses: Regional Perspective. Procedia Engineering, 134, 316-321. https://doi.org/10.1016/j.proeng.2016.01.013
Lajunen, A.; Lipman, T. (2016). Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses. Elsevier Ltda.
Lebeau, K.; Lebeau, P.; Macharis, C.; Mierlo, J. V. (2013). How expensive are electric vehicles? A total cost of ownership analysis. World Electric Vehicle Journal, 6, 999-1007. https://doi.org/10.3390/wevj6040996.
Li, X.; Gorguinpour, C.; Sclar, R.; Castellanos, S. (2019). How to enable electric bus adoption in cities worldwide: a Guiding Report for City Transit Agencies and Bus Operating Entities. World Resources International – WRI. Available in < https://www.wri.org/publication/how-enable-electric-bus-adoption-cities-worldwide>. Accessed 15/08/2020
Lindgren, L. (2015). Full electrification of Lund city bus traffic – A simulation study. Department of Industrial Electrical Engineering and Automation, Lund Institute of Technology
Mattes, P. (2018). Performance of an Electric Bus, Powered by Solar Energy. VII Congresso Brasileiro de Energia Solar
Millo, F.; Rolando, L.; Fuso, R.; Mallamo, F. (2014). Real CO2 emissions benefits and end user’s operating costs of a plug-in Hybrid Electric Vehicle. Applied Energy, 114, 563–571. https://doi.org/10.1016/j.apenergy.2013.09.014
Noel, L.; Mccormack, R. A cost benefit analysis of a V2G-capable electric school bus compared to a traditional diesel school bus. Applied Energy, 126, 246-255. https://doi.org/10.1016/j.apenergy.2014.04.009
Siqueira, F. H.; Pinheiro, B. C.; Tavares, V. B. (2019). Panorama sobre o monitoramento do desempenho de ônibus elétricos. 33º Seminário ANPET. Balneário Camboriú, Brazil.
Slowik, P; Araújo, C.; Dallmann, T.; Façanha, C. (2018). Avaliação Internacional de Políticas Públicas para Eletromobilidade em Frotas Urbanas. Ministério da Indústria, Comércio Exterior e Serviços, Brasília, DF
Tcrp (2018). Battery Electric Buses State of the Practice - A Synthesis of Transit Practice. Synthesis 130. Transit Cooperative Research Program, Washington – DC, EUA
Tesar, M., Berthold, K., Gruhler, J. P., & Gratzfeld, P. (2020). Design Methodology for the Electrification of Urban Bus Lines with Battery Electric Buses. Transportation Research Procedia, 48, 2038-2055. https://doi.org/10.1016/j.trpro.2020.08.264
Tong, F.; Hendricksonb, C.; Biehlerd, A.; Jaramillob, P. (2017). Life cycle ownership cost and environmental externality of alternative fuel options for transit buses. Transportation Research Part D: Transport and Environment, 57, 287–302. https://doi.org/10.1016/j.trd.2017.12.008
Tong, F.; Hendricksonb, C.; D, Biehlerd, A.; Jaramillo, P.; Sekib, S. (2017). Life cycle ownership cost and environmental externality of alternative fuel options for transit buses. Transportation Research Part D, 57, 287–302. https://doi.org/10.1016/j.trd.2017.09.023
Uitp (2018), Infraestrutura Básica para Ônibus Elétrico a Bateria. Relatório de recomendações, Transport & Urban Life, Latin America
Useche, S., Gómez, V., & Cendales, B. (2017). Stress-related psychosocial factors at work, fatigue, and risky driving behavior in Bus Rapid Transport (BRT) drivers. Accident Analysis & Prevention, 104, 106-114. https://doi.org/10.1016/j.aap.2017.04.023.
Vaz, L. F. H. (2015). Veículos híbridos e elétricos: sugestões de políticas para o segmento. BNDES Setorial, p. 295-344
Wilson, G. (2014). Resultados do Teste com o Ônibus Elétrico na Cidade do Rio de Janeiro. FETRANSPOR, Rio de Janeiro
WRI (2017). Modelo de Negócio para adoção de ônibus elétricos. Seminário E-Mob GIZ. World Resources International, Brasília, Brasil
Xylia, M.; Leduc, S.; Patrizio, P.; Kraxner, F.; Silveira, S. (2017). Locating charging infrastructure for electric buses in Stockholm. Transportation Research Part C: Emerging Technologies, 78, 183–200. https://doi.org/10.1016/j.trc.2017.03.005.
Zeeus (2016). Grid impacts of electric bus system based on depot charging. Zero Emission Urban Bus System, Version 1.9
Zeeus (2017). ZeEUS eBus Report #2. Available in < https://zeeus.eu/uploads/publications/documents/zeeus-report2017-2018-final.pdf>. Accessed 15/08/2020
Zeeus (2018). Tender Structure for Urban Electric Bus Procurement. Zero Emission Urban Bus System, 1
Zeeus (2019). Urban E-bus Systems Deployment Plan and Recommendations. Zero Emission Urban Bus System;
Zhou, B.; Wu, Y.; Zhou, B.; Wang. R; Ke, W; Zhang, S.; Hao, J. (2016). Real-world performance of battery electric buses and their life cycle benefits with respect to energy consumption and carbon dioxide emissions. Energy, 96, 603-613. https://doi.org/10.1016/j.energy.2015.12.041
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Produção e Desenvolvimento
This work is licensed under a Creative Commons Attribution 4.0 International License.
All content on this work is licensed under a Creative Commons BY Attribution 4.0 Unported license. The articles are free to use, with their CC BY attributions of license.
The journal is not responsible for the opinions, ideas and concepts emitted in the texts, as they are the sole responsibility of its author (s).
The publisher has the right to reject articles that in the evaluation process have been detected signs of plagiarism. The articles that have been detected indications of plagiarism after the publication, will be excluded from the edition. And the indication of the problem will be informed in the place of the text, keeping the same amount of pages.
This journal adopts the principles of ethical conduct of international quality Committee on Publication Ethics (COPE), as well as the parameters of Integrity in the Scientific Activity indicated by SCOPUS and SCIELO.